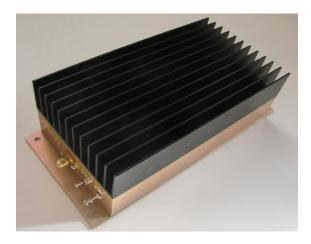


760 – 880 MHz 16-20W RF Power Amplifier


Features

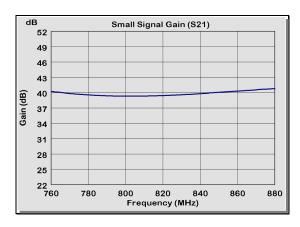
- Frequency Range: 760-880MHz (min)
- Gain: 39.5dB (typ.)
- P_{3dB}: >+42.5dBm
- P_{sat}: >+43dBm
- DCpower: 12V (nominal), 9-15V OK
- SMA-Female connectorized
- Typ. for Mobile Radio, HAM Radio, etc.

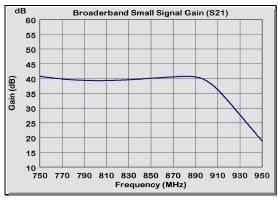
Description

HD29984 is a 16Watt output (min. $@P_{3dB})$ RF PowerAmplifier; within frequencies of 760 to 880MHz; operating from a single 12VDC power supply (9-15VDC usable, but not recommended). With proper (active)

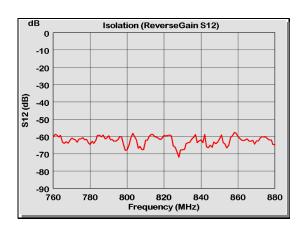
cooling is capable of **20Watt RFpower out** (@P_{sat}), under *special* (non-*standard*) warranty.

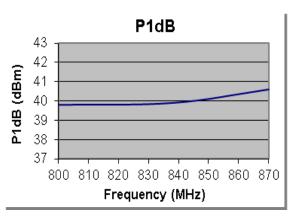
Electrical Specifications @ +25°C, Z_{in}=Z_{out}=50Ohm, V_{supply} = +12VDC IMPORTANT: MUST USE ACTIVE COOLING IF CASE TEMP. EXCEEDS 65°C or to ACHIEVE MAX. RFpower Output over 12W upto 20W (over +41dBm upto +43dBm), keeping under 18W recommended.

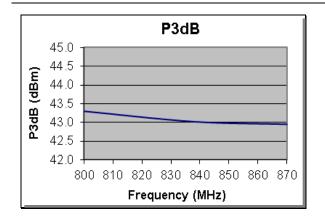

Parameter	Unit	Minimum	Typical	Maximum
Frequency Range	MHz	760		880
Small Signal Gain	dB	38.5	39.5	40.5
Output Power - 3dB gain compr. (P _{3dB})	dBm	+42.5	+43	
Output Power - saturated (P _{sat})	dBm	+43		
Reverse Isolation (S12)	dB		-65	-59
VSWR - Input (S11)	ratio:1	1.5 @880MHz	2.0 @820MHz	2.3 @760MHz
VSWR - Output (S22)	(unitless)	2.1 @830MHz	2.3	3.0
				@760MHz
VSWR - Load Tolerance (non-destructive)	ratio:1			6
Efficiency @838MHz & Pout in dBm	%	<26 @P _{out} <+40	33 @P _{out} +42	36 @P _{out} +43

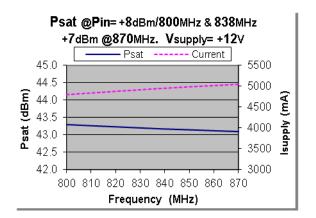


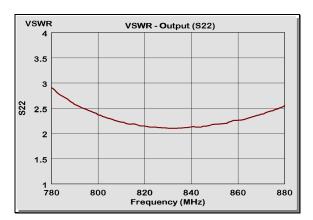
760 – 880 MHz 16-20W RF Power Amplifier


DCpower Supply - voltage (unipolar, positive)	V	9 not	12	15 not
		recommended		recommended
DCpower Supply - current: quiesc. (no RF)	А	1.3	1.5	
@P _{out} = +40dBm	А		3.2	3.4
Size (incl. all hardware & heatsink [standard])	Inch	7.00 (L) x 3.25 (W) x 2.00 (H)		
Weight (incl. all hardware & heatsink [standard])	Oz		24	


Typical Performance @ +25°C

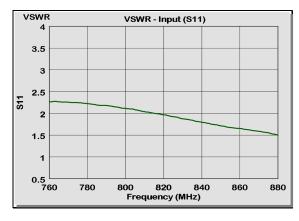

(Power & S-parameters also available for download)


Page 2

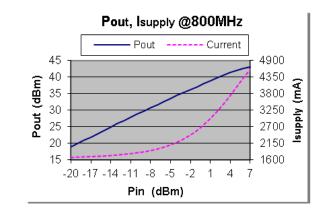


Typical Performance @ +25°C

760 – 880 MHz 16-20W RF Power Amplifier



(Power & S-parameters also available for


Page 3

download)

760 – 880 MHz 16-20W RF Power Amplifier

Pout, Isupply @838MHz

Current

Current

4900

4350

3800

3250

2700

2150

1600

Isupply (mA)

Pout

-8 -5 -2 1 4 7

Pout

Pin (dBm)

Pout, Isupply @870MHz

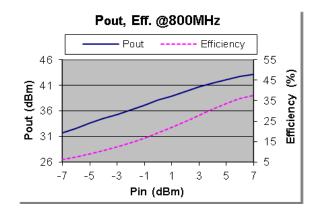
45

40

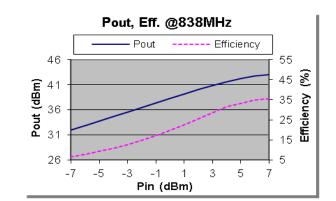
35

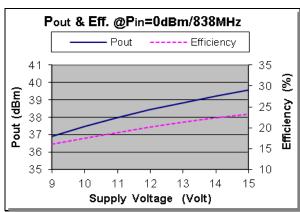
30

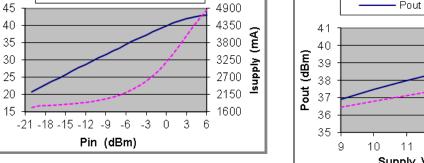
25


20

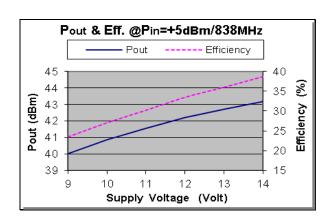
15

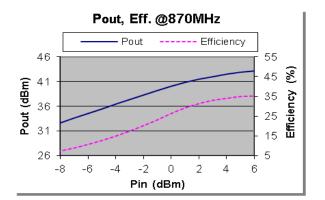

-20 -17 -14 -11

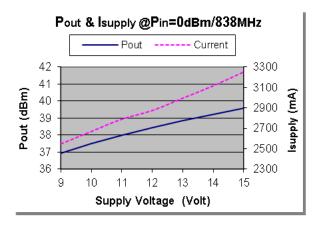

Pout (dBm)


Pout (dBm)

Typical Performance @ +25°C



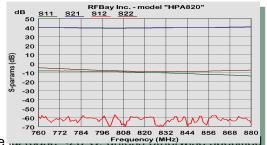



HD Communications Corp. 332-C Dante Court, Holbrook, NY 11741 Tel: (631) 588-3877 Fax: (631) 648-0518 Email: sales@hdcom.com

760 – 880 MHz 16-20W RF Power Amplifier

Pout & Isupply @Pin=+5dBm/838MHz Pout Current 45 4500 44 4300 (mA) Pout (dBm) 43 4100 3900 **Alddns** 3700 **S** 42 41 40 39 3500 9 10 11 12 13 14

Supply Voltage (Volt)


Page 5

760 – 880 MHz 16-20W RF Power Amplifier

Absolute Maximum Ratings

Parameter	Absolute Maximum
RF Input Power	+15dBm
Supply Voltage	+16V
Operating Temperature	-30 °C to +65 °C
Storage Temperature	-55 °C to +100 °C

The above parameters are independently guaranteed and are unit

APPLICATION NOTES (reliability):

• Thermal:

Specifications shown above as graphs, are at room temperature (23-25°C i.e. in a controlled environment), per international standard. If Amplifier's temperature is let rise significantly (e.g. towards max. 65-70°C) in customer's use, DCpower (supply) current may rise and stabilize at approx. 200-450mA higher values vs. shown in graphs, especially if at the same time RF PowerOut is driven beyond approx. 9Watt (contributing to selfheating, besides ambient temperature) - which is normal. Such increase in DCsupply current due to higher than standard ambient temperature, is less pronounced at low RF PowerOut; at below 1Watt it may add less than 90mA vs. current @25°C. Amplifier is designed to operate normal at **ANY** temperature or RF PowerOut within specs, this notice is only a recommendation to expect higher DCcurrent if user allows heat build-up far above standard 25°C.

Stock Heatsink is removable & upgradeable by the user, additionally Mountplate (opposite of heatsink) is strongly recommended to mount on a surface conducting heat away (e.g. mass of metal); some customers use active cooling such as fans (for extreme environment, even liquid cooling is an option), however be careful to not generate ElectroStatic Fields harmful for RF/Microwave devices. Use of inadequate Heatsink or HeatSpreader instead of stock, or inappropriate thermal-interface-material (TIM, i.e. grease, paste, semi-solids) voids warranty; *HD Communications Corp.* reserves the right to determine if a unit submitted for warranty service had been thermally abused. The key to reliability, is not only to minimize temperature rise, but also avoid repetitive thermal gradient (shock) due to cold-hot-cold cycling; these Amplifiers are meant for Commercial (rather than Mission-Critical) Mobile communications; in particular in Base & Fixed station applications with long-term continuous transmission and a higher On-Off frequency, please consider derating, redundancy system, maintenance schedule, or otherwise assure reliability.

Oscillation & Load VSWR:

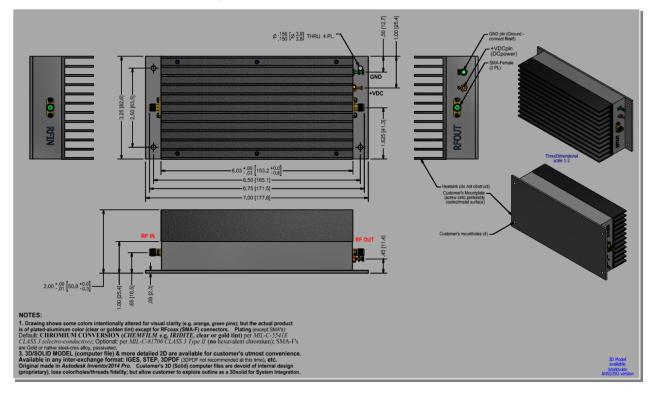
This amplifier's rugged design can withstand Load VSWR mismatch upto 6:1 (no degradation/destruction), guaranteed stable (no parasitic self-oscillation) for Pout<20Watt & Load VSWR under 3:1. If oscillation is observed, check if Load & Source impedances $Z_L = Z_S = 50$ Ohm; adding DCpower decoupling ceramic + electrolytic capacitors (in parallel, closest possible to amplifier & minimal parasitic inductance to Ground) may help but not necessary, because already present internally. • **ESD**:

HD Communications Corp. 332-C Dante Court, Holbrook, NY 11741 Tel: (631) 588-3877 Fax: (631) 648-0518 Email: sales@hdcom.com

Page 6

760 – 880 MHz 16-20W RF Power Amplifier

Sensitive to ESD voltages to approx. 1KiloVolt - as typical for RF/Microwave amplifiers, appropriate ESD precaution is required.


Mounting & DCpower connection:

04/13

Avoid excessive or torque (twisting) force onto DC terminals

Outline (compact version)

Also available as a standalone higher-resolution *3Dmodel (MCADsolid)* & *2Ddrawing* - see "Notes" on compact drawing (below):

