HD30838

54-88MHz 25W Class A High Performance Amplifier

- * Class A 25W amplifier
- ✤ 54-88MHz bandwidth
- * 46.5dB typical gain
- +/- 0.7dB typical gain flatness
- Temperature-compensated bias
- TTL disable
- Available with SMA connectors, heatsink and fan, enclosed with DC supply, or as a module

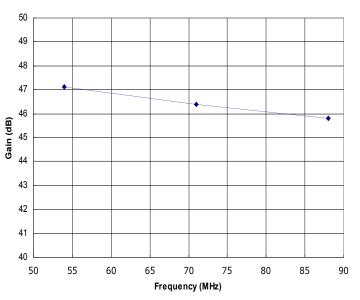
The HD30838 is a Class A high performance amplifier, outstanding as a driver stage in analog or digital television systems. It exhibits excellent full power and back-off linearity, and utilizes a combination of two active device technologies for optimum performance and ruggedness.

Specifications $V_{sup} = +28VDC$, $I_{DQ} = 3.90A$, $P_{out} = 25W$, $T_{base} = 25^{\circ}C$, $Z_{load} = 50\Omega$						
Parameter	Min	Тур	Max	Units		
Freq. Range	54		88	MHz		
P _{1dB}	40	See Figure 4		W		
Input Power		-2.5	1	dBm		
Gain	43	46.5		dB		
Gain Flatness		+/-0.7	+/-1.5	dB		
Drain Current		4.0	4.2	А		
Efficiency	21	22		%		
IRL		-30	-20	dB		
f ₂		-34	-25	dBc		
f ₃		-38	-30	dBc		
IMD_3 25W PEP, $\Delta f=1MHz$ See Fig. 2 for 4.7MHz		-38	-33	dBc		
Dimensions	2.00 X 5.70 X 1.20 (50.80 X 144.78 X 30.48)			inch (mm)		

Maximum Ratings Operation beyond these ratings will void warranty.				
Parameter	Value			
V _{supply}	24-30VDC			
Bias Current	3.9A			
Drain Current	4.4A			
Load Mismatch*	5:1			
Baseplate Temp.	65°C			
Storage Temp.	-40°C to 85°C			

*All phase angles, 25W forward power, current limited to 4.4A for 5 seconds max.

Option Ordering Info


SMA connectors	HD30838-SMA
Heatsink and fan	HD30838-HSF
Enclosure with DC supply and fan	HD30838-DC
Module	HD30839

HD Communications Corp. • 332-C Dante Ct • Holbrook, NY • 11741 USA PH # (631) 588-3877 • Fax# (631) 648-0518 • <u>sales@rfcomp.com</u> • <u>www.rfcomp.com</u> Specifications contained herein are subject to change without notice. HD Communications Corp. assumes no liability for the use of this information. Page 1 of 4

HD30838

54-88MHz 25W Class A High Performance Amplifier

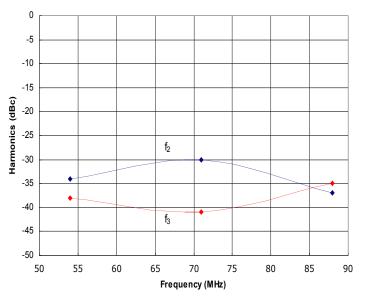


Figure 3: HD30838 Typical f₂ and f₃ @ P_{out} = 25W.

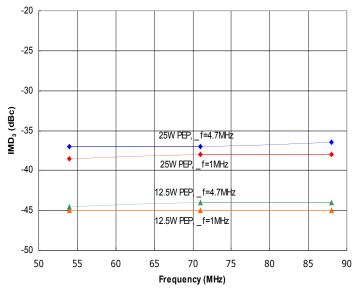
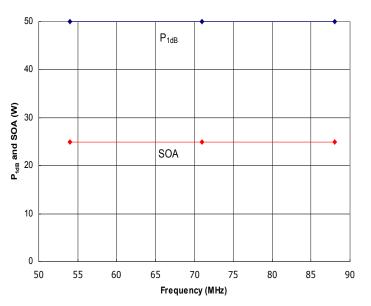
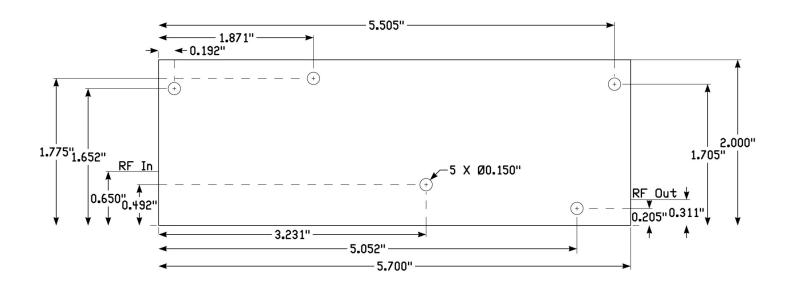


Figure 2: HD30838 Typical IMD₃ @ 25W and 12.5W PEP, Δf =1MHz and Δf =4.7MHz.




Figure 4: HD30838 Typical P_{1dB} and Safe Operating Area (SOA). The amplifier is capable of delivering much more power than it is safe to generate. Do not exceed the SOA shown above.

HD Communications Corp. • 332-C Dante Ct • Holbrook, NY • 11741 USA PH # (631) 588-3877 • Fax# (631) 648-0518 • <u>sales@rfcomp.com</u> • <u>www.rfcomp.com</u> Specifications contained herein are subject to change without notice. HD Communications Corp. assumes no liability for the use of this information. Page 2 of 4

54-88MHz 25W Class A High Performance Amplifier

Amplifier Mounting Hole and RF Locations

HD30838

54-88MHz 25W Class A High Performance Amplifier

Instructions for Amplifier Use

- 1) If not supplied with a heatsink, apply a layer of high quality thermal grease (Wakefield Type 120 or equivalent) to the underside of the amplifier baseplate. Thinner is better, but ensure that when mounted to your heatsink, contact across the *entire* baseplate is made. Gaps and air bubbles will significantly reduce cooling, leading to possible amplifier damage. Use five #6-32 screws to mount the amplifier to your heatsink.
- 2) Guarantee sufficient airflow through the heatsink fins to keep the maximum baseplate temperature at or less than that specified in the Maximum Ratings section. Contact HD Communications Corp. for details on how to qualify your heatsink's performance, if needed.
- 3) Connect a proper signal source to the RF IN connector (or via cable to RF IN pad), and desired load to the RF OUT connector (or via cable to RF OUT pad). Torque connectors, if present, to industry standards for the type supplied with the amplifier.
- 4) Connect DC V_{supply} to the terminal provided. Solder a ground wire to the GND pad. Ensure that the connections are of proper polarity, and within the voltage range in the Maximum Ratings section.
- 5) Apply DC power and sufficient RF drive to achieve desired output level. Ensure that the Safe Operating Area (SOA) power level indicated in Figure 4 is not exceeded, or amplifier damage may occur, and will void the warranty.
- 6) To disconnect the amplifier, first remove the RF drive, then DC power, then the RF connections.

Contact us at <u>sales@rfcomp.com</u> with any questions, or for special options, testing requirements, and/or operating conditions not specified in this document.

Document Control

Revision	Date	Notes	
A	6-29-2015	Production release.	